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a b s t r a c t

Covid-19, caused by severe acute respiratory syndrome coronavirus 2, broke out as a pandemic during
the beginning of 2020. The rapid spread of the disease prompted an unprecedented global response
involving academic institutions, regulatory agencies, and industries. Vaccination and nonpharmaceuti-
cal interventions including social distancing have proven to be the most effective strategies to combat
the pandemic. In this context, it is crucial to understand the dynamic behavior of the Covid-19 spread
together with possible vaccination strategies. In this study, a susceptible–infected–removed–sick model
with vaccination (SIRSi-vaccine) was proposed, accounting for the unreported yet infectious. The model
considered the possibility of temporary immunity following infection or vaccination. Both situations
contribute toward the spread of diseases. The transcritical bifurcation diagram of alternating and
mutually exclusive stabilities for both disease-free and endemic equilibria were determined in the
parameter space of vaccination rate and isolation index. The existing equilibrium conditions for both
points were determined in terms of the epidemiological parameters of the model. The bifurcation
diagram allowed us to estimate the maximum number of confirmed cases expected for each set of
parameters. The model was fitted with data from São Paulo, the state capital of SP, Brazil, which
describes the number of confirmed infected cases and the isolation index for the considered data
window. Furthermore, simulation results demonstrate the possibility of periodic undamped oscillatory
behavior of the susceptible population and the number of confirmed cases forced by the periodic
small-amplitude oscillations in the isolation index. The main contributions of the proposed model are
as follows: A minimum effort was required when vaccination was combined with social isolation,
while additionally ensuring the existence of equilibrium points. The model could provide valuable
information for policymakers, helping define disease prevention mitigation strategies that combine
vaccination and non-pharmaceutical interventions, such as social distancing and the use of masks.
In addition, the SIRSi-vaccine model facilitated the qualitative assessment of information regarding
the unreported infected yet infectious cases, while considering temporary immunity, vaccination, and
social isolation index.

© 2023 ISA. Published by Elsevier Ltd. All rights reserved.
1. Introduction

On January 30, 2020, the World Health Organization (WHO)
eclared a public health emergency of international concern
PHEIC). Four weeks prior to that, the Wuhan Municipal Health
ommission had reported a cluster of pneumonia Cases, for which
he causative agent was identified as the severe acute respi-
atory syndrome coronavirus 2 (SARS-CoV-2), and the disease
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was named Covid-19. Following the WHO alert, Covid-19 was
declared a pandemic in March 2020 [1,2]. The rapidly spreading
disease challenged healthcare agencies, academic institutions,
and industries to develop and deploy efficient vaccines and drug
treatments.

Several drugs were tested on patients with Covid-19 unfortu-
nately, the studies [3–7] found marginal or no effect on overall
mortality, initiation of ventilation, the duration of hospital stay,
or viral clearance, even with chronic use.

On the other hand, non-pharmaceutical interventions (NPIs),
including physical distancing, use of facemasks, and eye pro-
tection, reduced viral transmissions [8,9]. Populations across the
globe were compliant with NPIs; however, in certain countries,
their effectiveness fluctuated [10] resulting in hesitancy toward

vaccination [11]. In Brazil, the closure of nonessential activities
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asted only for a short time, and NPIs were lifted in cities in an
ncoordinated manner [9]. Consequently, the downward trend
n the number of Covid-19 cases reversed in November 2020,
nitiating a second wave of infections [12].

Although vaccine development is considerably expensive and
equires several years or decades, Covid-19 vaccines were de-
eloped rapidly, owing to the years of prior development of
accines against similar viruses such as severe acute respira-
ory syndrome (SARS) and the Middle East respiratory syndrome
MERS). In addition, the experience obtained from combating the
bola vaccine showed that vaccine development can be acceler-
ted through coordinated global efforts, including those of aca-
emic institutions, industries, and healthcare regulatory agencies,
ithout compromising safety [13–15].
To date, more than hundred Covid-19 vaccines have been

eveloped for human clinical trials. Emergency use authorization
or Covid-19 vaccines was granted at the beginning of Decem-
er 2020 by Britain’s National Health Service and later by the
S Food and Drug Administration (FDA). In January 2021, the
razilian National Health Surveillance Agency (Anvisa) granted
mergency use authorization for Covid-19 vaccines. Currently, 12
accines have been approved for human administration in many
ountries [16,17].
The Covid-19 pandemic and subsequent efforts for vaccination

tarted a race among countries to rapidly vaccinate their popu-
ations. Immunization results of nationwide mass vaccination in
srael [18] strengthened the expected mitigation of the Covid-19
andemic. However, in many countries, a successful vaccination
trategy required a lengthy journey [19].
Logistics play an important role in vaccination strategies, re-

uiring nationally coordinated administration, considering the di-
ersity of interventions and local changes in vaccine supply [20].
n addition, the efficacy1 of the vaccines currently in develop-
ent and use range between 50.38%–95.0% [16], necessitating
ifferent vaccination strategies based on factors such as the num-
er of doses, immunization schedule and specific storage facility
equirements.

Healthcare agencies ought to consider new Covid-19 variants
nd vaccination strategies such as varying the NPI implemen-
ation or delaying the second dose to accelerate the first-dose
accination among the population [21,22]. Vaccine efficacy and
opulation coverage are important factors; vaccines ought to
xhibit an efficacy of at least 70% with a population coverage
f at least 75% to prevent outbreaks without intervention. The
andemic is expected to dwindle after attaining a vaccine efficacy
f at least 80% with vaccination administered to a population of
5% [23].
Provided this complex context, to attenuate the ongoing pan-

emic, it is important to understand the dynamic behavior of the
ovid-19 pandemic, considering possible vaccination strategies.
Epidemiological models are important tools in the decision-

aking process for establishing regional or national health poli-
ies, helping answer questions such as: when will the next peak
f infections occur? Is social distancing an effective strategy?
ill the number of new cases and hospitalizations increase or
ecrease for a given strategy? Moreover, the primary use for
pidemiological models is to estimate the relative effectiveness
f various interventions [24].
No model can perfectly predict the spread of a disease. How-

ver, approximations with low uncertainties can be useful in de-
igning public health policies. For instance, short-term forecasting
s important for planning hospital bed numbers; long-term fore-
asts in this case are usually unnecessary. Every epidemiological

1 Vaccine efficacy is the percentage disease reduction in a vaccinated group
n a clinical trial.
392
model is built on assumptions that allow for simplifications. As a
general rule, oversimplified models cannot capture complex be-
haviors in the dynamics of a diseases. However, complex models
can be deceitful and generate an impression of realism while
concealing crucial information [24,25].

Usually, epidemiological models involve such as considering
a homogeneous population, which means that every individual
exhibits an equal probability of contact with each other, and
assumes a constant population with no births or migration. In
many cases, the models do not consider the latent period after
an individual is exposed or infected by the disease, but is not yet
infectious [24].

Since the onset of the pandemic, many scientific studies have
focused toward mitigating the pandemic. These studies include
control system strategies deep learning modeling, mathematical
modeling analysis, social networks, game theory, and numerical
simulations, to predict the contagious behavior of Covid-19and to
arrive at vaccination strategies.

Arunkumar et al. [26] proposed two time-series models for
the COVID-19 pandemic: the autoregressive integrated moving
average (ARIMA) and seasonal auto-regressive integrated moving
average (SARIMA) models were developed using data from dif-
ferent countries accounting for 70%–80% of the global cumulative
cases. The results for the worst-case scenarios showed a possible
exponential growth in the number of confirmed cases and deaths.
However, the primary limitation of this study was related to
the strong uncertainties in the model parameters, resulting in a
wide range of possible future trajectories, and impaired long-term
forecasting.

Fiacchini et al. [27] proposed a simple two-parameter two-
dimensional model developed to reproduce the time-series of
daily deaths and hospitalizations in France. Despite its simplic-
ity, the model reproduced the general behavioral trends of the
time-series.

An interesting epidemiological model was presented by
Markovič et al. [28]. A computational model was developed
for a social network, allowing the study of Covid-19 epidemics
in heterogeneous populations. Social networks were considered
to comprise subpopulations with different economic statuses,
health conditions (comorbidities), and ages. An extended SEIRS
model was used to explore the influence of these aspects on
the progression of Covid-19. They highlighted that the spatial
configuration could be a determinant of the development of the
disease; they concluded that in a healthier society, the disease
may spread rapidly, however with less severe consequences. The
advantages of considering complex patterns of interactions and
the heterogeneity of the population showed that different from
the public vaccination policies widely adopted, if vaccination is
limited and demographic distribution in the social network is
homogeneous, better epidemic results can be achieved, assuming
that the healthy individuals are vaccinated first, rather than
prioritizing the elderly and other risk groups.

Game theory and social network models can be used for
such decision-making regarding the best policies for vaccination
programs. Piraveenan et al. [29] coupled game theory with so-
cial network analysis and agent-based techniques to model the
population and simulate the dynamics of Covid-19. Game the-
ory modeling considered two components: the decision-making
process of individuals receiving the vaccine, and the administra-
tive process associated with governments and policymakers in
selecting the population groups to be vaccinated, provided the
initial dose limitations. The former component is an influenced
by factors such as demography, physical location, and health. The
latter component is influenced by factors such as the epidemic
parameters, logistics, and human resources. The approach pro-

vided a roadmap for the implementation of vaccination programs.
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he results showed that efficient testing using contact tracing
nd isolation procedures are important factors for the contain-
ent of Covid-19; however, effective vaccination programs and
accination uptake surpass these factors to mitigate the Covid-19
andemic regionally and globally.
Tichoumi et al. [30] investigated the co-dynamics of malaria

nd Covid-19 and a control strategy based on nontherapeutic
nterventions was proposed to mitigate the propagation of both
iseases in the population. The numerical results showed that
ach disease can be controlled individually; however, better re-
ults were obtained when both controls were applied to reduce
he number of infections and coinfections.

A susceptible–infected–removed model was used to predict
he Covid-19 pandemic in Kuwait [31], the study recommended
he extension of preventive measures to control the Covid-19
rowth. An SIR-type model with a nonconstant population was
eveloped by Muñoz-Fernández et al. [32]. The model was cali-
rated using the rates of infection and death in Italy, Spain, and
he USA. Several plausible scenarios were investigated, drawing
ttention to the high transmission rates in the USA. The model
as used to investigate the sensitivity to sociological behavioral
hanges, such as higher mobility and relaxation of individual
rotection toward measures such as the use of face-masks.
A susceptibility–infected–removed–sick (SIRSi) model was pro-

osed by Batistela et al. [33], considering unreported or asymp-
omatic cases and the effects of temporary acquired immunity in
he Covid-19 propagation. The results revealed the existence of a
utually exclusive disease-free and endemic equilibrium points.
s the model accounts for asymptomatic cases, the effects on the
andemic dynamics could be inferred.
In contrast, Zhai et al. [34] showed that reinfection can occur

mmediately after an infection period, that is, without temporary
cquired immunity. The SIR extended model accounts for age
eterogeneity in the population using two compartments: S1 for

children of age < 14 years and for the elderly of age > 65 years;
2 for the population of 14 years < age < 65 years. The results
evealed various scenarios, including disease-free endemic and
pidemic situations.
Nakamura et al. [35] modeled the death toll owing to the

ovid-19 pandemic using a sigmoid curve to predict mortality
nd estimate values such as the basic reproduction number, that
s, the number of new cases per infection. The fitting of the
igmoid curve allowed for the determination of epidemiological
arameters from systems of algebraic equations. In addition, the
btained parameters can be used as initial estimates for other
ptimization algorithms.
Wei et al. [36] developed a susceptible–exposed–quarantined–

nfected–recovered (SEQIR) mathematical model of Covid-19 and
mplemented a control system based on the state observers. This
ontrol system aimed to reduce the number of susceptible indi-
iduals in a population using the NPI strategy. The state-observer
pproach was an interesting choice for effectively addressing the
ransmission uncertainties of Covid-19.

A susceptible–infected–recovered–deceased (SIRD) model was
eveloped by Morato et al. [37] and a quarantine strategy was
onsidered for the control of Covid-19 in Brazil. The quarantine
trategy was guided by a model-predictive control procedure. As
ocial distancing measures are implemented, the epidemiological
arameters vary, which were estimated using an autoregressive
ntegrated moving average (ARIMA) model for forecasting the
ovid-19 pandemic in Brazil. The results demonstrated that herd
mmunity could not be achieved, and that as a coordinated con-
rol strategy was not pursued, social distancing measures would
ontinue for a long time.
Ma et al. [38] proposed a generalized SEIR model with

ractional-order derivatives. A sensitivity analysis of basic repro-
uction number R0 with respect to the epidemiological param-
ters was performed to rank the critical parameters controlling
393
epidemics. The parameters related to the protection rate, which
can be viewed as an ensemble of protective measures, such as
social distancing and vaccines, are the most effective Covid-19
control parameters.

Kumar and Kumar [39] developed a fuzzy time series model
to forecast the number of deaths owing to Covid-19 pandemic
in India. This model facilitates the estimation of the number of
hospital beds and the number of intensive care units necessary
to manage pandemics in the future.

Several studies have considered deep learning for predict-
ing the number of Covid-19 cases. These studies included a
prediction model for the confirmed cases and deaths owing to
Covid-19 based on a deep learning algorithm with two long
short-term memory layers, considering the data available for
Covid-19 in India [40]. Furthermore, multi-layer deep learning
models with perceptron, random forest, and long short-term
memory, were trained and used for forecasting the Covid-19 pan-
demic in Iran [41]. In both cases, the models exhibited limitations
in terms of data quality as the testing rate varied significantly
over time.

Additionally, several studies have considered the dynamics of
vaccination strategies. Angeli et al. [42] modeled the effects of
a vaccine campaign with the aim of Forecasting the epidemic
evolution. The extended SIR model with several parameters and
a machine learning method were used to determine the initial
conditions. Data from 27 countries were used to study the evolu-
tion of the pandemic. The study concluded that herd immunity
was probably beyond attainment, highlighting the importance
of reducing the infection rate through restrictive measures and
vaccination.

Li and Guo [43] considered an imperfect vaccination model
to develop control strategies for mutated Covid-19 strains. The
control strategy comprised the following steps: imperfect vacci-
nation, isolation, and testing. This study addressed the problem
of dynamically adjusting the three control strategies to minimize
the number of infections at the lowest cost. A two-strain model
was studied by León et al. [44]. They argued that the delta variant
was common across many countries, probably because of the
high transmission rate in vaccinated individuals and the delay in
administration of booster vaccine doses.

A bi-virus competing model was presented by Luo et al. [45],
and its stability was studied. When the disease-free equilibrium
was unstable, that is, in an ongoing epidemic, two viruses com-
pete, and eventually, one is extinguished and the other becomes
dominant.

Yasuda et al. [46] proposed an age-specific epidemic model
and studied the impact of vaccination strategies on young (so-
cially active) populations and in older populations with higher
health risks. The significance of the study is the consideration of
the heterogeneity in the population, considering the differences
in social activities related to population age.

The development of predictive tools that consider the science
of complexity as a delineator has facilitated significant advances
in the dynamics of global epidemics by considering multiple fac-
tors believed to be relevant to the context, such as demographic
variations, mobility patterns, detailed epidemiological data, and
disease characteristics. An important initiative in this direction
is the global epidemic and mobility (GLEAM), which provides a
simulation framework involving these considerations [47].

Zhai et al. [48] studied the SEIR model and designed the
vaccination strategy using a delayed-state feedback linearization
technique. The results show the possible control of Covid-19
epidemics in finite time.

Zhai et al. [49] proposed a multi-group SEIIR model,
considering two infectious compartments: infectious but not

in treatment; infectious and in treatment. The stability of the
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isease-free equilibriumwas studied. When the disease-free equi-
ibrium was unstable, two control strategies were proposed:
ncreasing the treatment capacity; and increasing the number of
ests to remove virus-free population.

In compartmental models, the dissemination of a virus within
population can be described using a system of time-dependent
ifferential equations (dynamic system). In the the current study,
he spread of Covid-19 was accordingly, described by a set of
ifferential equations written in a state-space format [50,51].
We modified a previous model [33], and proposed a vacci-

ation strategy for susceptible individuals. The proposed SIRSi-
accine model comprises four compartments: susceptible,
nfected, sick, and recovered. The focus was on assessing the ef-
ects of the proposed vaccination together with social distancing
s an NPI in the Covid-19 spread dynamics.
The proposed SIRSi-Vaccine model presents both the disease-

ree and endemic equilibrium points. The equilibrium-point
tabilities were studied both analytically and numerically. Con-
equently, the equilibrium condition was related to the effects of
ocial distancing with the proposed vaccination.
The SIRSi-Vaccine model was numerically adjusted for the

pidemic situation in São Paulo, facilitating the development of
elationship between the contours of the maximum number of
onfirmed cases and combination for social distancing index and
accination rate parameters. In addition, the simulation results
ndicated the existence of undamped oscillatory behavior in the
umber of confirmed cases in the susceptible population, driven
y a combination of short and long small amplitude periodic
scillations in the social distancing indices.
The proposed model was validated by describing the dynamics

f the spread of the disease in the São Paulo state capital city,
razil. When considering the description of society considering
he realities of a global pandemic, or even national or regional
cales, complexity science can provide more insightful solutions
han conventional approaches [52].

To stop the spread of Covid-19 different strategies, with re-
pect to social distancing and vaccination efforts, may be neces-
ary for different cities.
The remainder of this paper is organized as follows: Sections 2

nd 3 present the mathematical models and stability analysis of
he equilibrium points. The parametric fitting of the mathematical
odels are presented in Section 4. The numerical simulation re-
ults are presented in Section 5. The limitations of the model are
iscussed in Section 6. The conclusions are presented in Section 7.

. SIRSi model

A constant population model with four compartments was
roposed (Fig. 1): susceptible (S), infected (I), infected symp-
omatic positive tested (Sick), and recovered (R). The Sick compart-
ment comprises a group of infected people. Based on the data
collected from this group, we concluded that it is possible to
adjust the model parameters and assess information regarding
the nonreported infected (I), consisting of those infected and
infectious, with or without symptoms, however are not notified
by public agencies.

The available public data do not consider the spatial connec-
tivity between the individuals in the population, specific informa-
tion on different viral strains, specific characteristics of mutations,
agents with high viral loads, or other intrinsic factors. Therefore,
considering homogeneous population appears to be an effective
way to develop the model. SIR models are based on a macroscopic
view of the transmission of an infectious disease in a specific
population, allowing for a qualitative study of the disease [24,
25]. Provided these aspects, the proposed SIRSi model consid-
ers a homogeneous population, that is, all individuals have the
 t

394
Fig. 1. Block diagram for the compartmental SIRSi model in Eqs. (2.2). The
model consists of four compartments: susceptible (S), infected (I), infected
ymptomatic positive tested (Sick) and recovered (R). The arrows indicate the
low of individuals between compartments, with infection rate (α(1−θ )/N) and
ecovery rate (β1) governing the transition between infected asymptomatic and
ecovered compartments. The model assumes equal rates of births and deaths,
nd individuals who recover from the infection become completely susceptible
o the disease again at a certain rate, represented as (γ ).

ame probability to acquire or transmit the disease independently
f age, health, or economic condition. Additionally, the model
ssumes a closed population, without migration. Furthermore,
haracteristics such as the latency period, which depend on the
vailability of data, or viral mutations could not be considered.
In Fig. 1, I is the infectious population compartment repre-

enting the population in the incubation stage (prior to symptom
nset). Zou et al. [53–55] reported the transmission during this
eriod.
Many infectious diseases present an exposed or latent period

efore the development of symptoms. This is reflected in the
usceptible–exposed–infected–recovered (SEIR) models [56,57],
here the exposed compartment comprises infected individu-
ls that are not yet infectious, that is, not yet transmitting the
isease. To avoid the escalation of complexity in the model, we
ssumed that the infected individuals are already infectious.
Covid-19 is peculiar, because a fraction of the infected popula-

ion will never present any symptom throughout the course of the
isease. In addition, there are still unanswered questions on the
ransmission rate of the asymptomatic compared to the symp-
omatic individuals, and consequently, the role of asymptomatic
ndividuals is a key question in the evolution of the pandemic.
herefore, the model presented in Fig. 1 considers the influence
f asymptomatic individuals in the spread of Covid-19 [33].
Despite the peculiarity of Covid-19, considering that asymp-

omatic infected people, represented by the compartment I , con-
ribute to the dynamics of virus propagation, the model that
s validated with data from the reported infected people, (Sick),
facilitates the assessment of information regarding the non symp-
tomatic people (I), which is a relevant characteristic of the pro-
posed study. Additionally, the proposed model allows the study
of the efficiency of strategies combining vaccination and the
isolation index for formulating health policy aiming to mitigate
the Covid-19 spread.

Those who are asymptomatic or do not develop severe symp-
toms, that is, cases that are neither tested nor documented, are
moved to the R(t) (recovered) compartment at a rate of β1 [33].
β2 is the rate at which infected individuals develop symptoms

r are tested positive. Therefore, the Sick(t) compartment com-
rises individuals with more severe symptoms, seeking medical
ttention and adopting more stringent NPI such as quarantine.
Individuals in the Sick(t) compartment who recover are shifted
o the R(t) compartment at a rate β3.



C.M. Batistela, D.P.F. Correa, Á.M. Bueno et al. ISA Transactions 139 (2023) 391–405

N

c
(

r

C

Ω

r

R

w
r
p

P

J

J

λ

λ

λ

f

T
i
s

P
λ

P

w

ϕ

P

w

a
a
a

T
o
u

P

The possibility of temporary immunity for recovered individ-
uals [33,58–60], was additionally considered. As shown in Fig. 1,
the recovered (R) population becomes susceptible (S) again at a
rate of γ .

The model was developed considering the population size
constraint in Eq. (2.1). The population growth and death rates µ,
including deaths because of Covid-19 were similar in the state of
São Paulo [61]; therefore, in this study, they were considered to
be equal.

N = S(t) + I(t) + Sick(t) + R(t). (2.1)

From these considerations, the SIRSi mathematical model is
given by Eq. (2.2).

d
dt

S(t) = µN −
α(1 − θ )

N
S(t)I(t) − µS(t) + γ R(t);

d
dt

I(t) =
α(1 − θ )

N
S(t)I(t) − (β1 + β2)I(t) − µI(t);

d
dt

Sick(t) = β2I(t) − β3Sick(t) − µSick(t);

d
dt

R(t) = β1I(t) + β3Sick(t) − γ R(t) − µR(t).

(2.2)

In Eq. (2.2), the effect of social distancing measures, a form of
PI, was introduced by the parameter θ ∈ [0, 1]; θ = 0 indi-

cates that no social distancing measure was under consideration,
whereas θ = 1 indicates a complete lock-down.

Normalization with respect to the population size N was per-
formed using Eq. (2.1), resulting in Eq. (2.3),

1 = s(t) + i(t) + sick(t) + r(t), (2.3)

where s(t) = S(t)/N , i(t) = I(t)/N , sick(t) = Sick(t)/N , and
r(t) = R(t)/N . Replacing Eq. (2.3) into the system of Eq. (2.2),
yields Eq. (2.4).

d
dt

s(t) = µ− α(1 − θ )si − µs + γ r;

d
dt

i(t) = α(1 − θ )si − (β1 + β2)i − µi;

d
dt

sick(t) = β2i − β3sick − µsick;

d
dt

r(t) = β1i + β3sick − γ r − µr.

(2.4)

In addition, from Eq. (2.3), the recovered compartment r(t)
an be written as a linear combination of other compartments
or state variables), as shown in Eq. (2.5):

(t) = 1 − s(t) − i(t) − sick(t). (2.5)

onsequently, the solutions

= {(s(t), i(t), sick(t)) ∈ R3
+

| s(t) + i(t) + sick(t) ≤ 1}

of Eq. (2.4) can be studied in the system of Eq. (2.6):
d
dt

s(t) = µ+ γ − α(1 − θ )si − (µ+ γ )s − γ i − γ sick;

d
dt

i(t) = α(1 − θ )si − (β1 + β2 + µ)i;

d
dt

sick(t) = β2i − (β3 + µ)sick.

(2.6)

This model was studied by Batistela et al. [33]. The basic
eproduction number is given by:

0 =
α(1 − θ )

β1 + β2 + µ
, (2.7)

hich represents whether or not the disease will thrive; and
ate of spread, if at least one infected individual appears in the
opulation.
395
2.1. SIRSi equilibrium points

The system of Eq. (2.6) contains two equilibrium points: one is
consistent with a disease-free situation, and the other represents
an endemic equilibrium.

The disease-free equilibrium point Pdf 1 is given by Eq. (2.8).

df 1 =

[ s∗
i∗
s∗ick

]
=

[ 1
0
0

]
(2.8)

To analyze the local stability of the equilibrium point, the
acobian matrix J of the system in Eq. (2.6) is shown in Eq. (2.9).

=[
−α(1 − θ )i∗ − (µ+ γ ) −α(1 − θ )s∗ − γ −γ

α(1 − θ )i∗ α(1 − θ )s∗ − (β1 + β2 + µ) 0
0 β2 −(β3 + µ)

]
(2.9)

The eigenvalues associated with Pdf 1 are given by Eq. (2.10).

1 = −(µ+ γ ),

2 = (R0 − 1) (β1 + β2 + µ) ,

3 = −(β3 + µ).
(2.10)

The eigenvalue λ2 shows the possibility of a transcritical bi-
urcation, as it can change sign depending on the value of R0.

heorem 1. The disease-free EP (s∗, i∗, s∗ick) = (1, 0, 0) correspond-
ng to the model without vaccine in (2.6) is locally asymptotically
table, if R0 < 1; and unstable, if R0 > 1.

roof. The proof is evident from the definition of the eigenvalue
2 in Eq. (2.10). □

The endemic equilibrium point Pe1 is given by Eq. (2.11):

e1 =

[ s∗
i∗
s∗ick

]
=

⎡⎣ 1
R0

(β3 + µ)ϕ
β2ϕ

⎤⎦ , (2.11)

here

=

(
R0 − 1
R0

)(
γ + µ

(β1 + β2 + µ)(β3 + µ) + (β2 + β3 + µ)γ

)
.

(2.12)

The characteristic polynomial of Pe1 is given by Eq. (2.13):

e1(λ) = λ3 + a1λ2 + a2λ+ a3, (2.13)

here

1 = ϕα(1 − θ ) (β3 + µ)+ β3 + γ + 2µ

2 = (β3 + µ) [γ + µ+ ϕα(1 − θ ) (β1 + β2 + β3 + γ + 2µ)]

3 = ϕα (1 − θ) (β3 + µ) (β1β3 + β1µ+ β2β3 + β2γ

+ β2µ+ β3γ + β3µ+ γµ+ µ2) .
(2.14)

heorem 2. The endemic EP (s∗, i∗, s∗ick) = (1/R0, (β3 +µ)ϕ, β2ϕ)
f the system (2.6) is locally asymptotically stable, if R0 > 1; and
nstable, if R0 < 1.

roof. The coefficients a1, a2, and a3 in Eq. (2.14), are positive
real numbers, if ϕ > 0 (see Eq. (2.12)). In this case, we deter-
mined whether the characteristic polynomial in Eq. (2.13) con-
tains unstable or stable roots, using the Routh–Hurwitz stability
criterion [62].
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Consequently, the characteristic polynomial in Eq. (2.13) is
stable if Eq. (2.15) is satisfied:

b1 = a2 −
a3
a1
> 0. (2.15)

The proof that Eq. (2.15) holds true demands mathematical
reasoning, which results in Eq. (2.16):

b1 =
1
a1
(β3 + µ)

[
ϕ2c21c2 + ϕc1c3 + c4

]
, (2.16)

here

1 = α(1 − θ );

2 = (β1 + β2)(β3 + µ) + β2
3 + β3γ + 3β3µ+ γµ+ 2µ2

;

3 = β1γ + β1µ+ β2µ+ β2
3 + 2β3γ + 4β3µ+ γ 2

+ 4γµ+ 4µ2
;

4 = β3γ + β3µ+ γ 2
+ 3γµ+ 2µ2.

The expression inside the brackets in Eq. (2.16) is positive, if
> 0. Consequently, for ϕ > 0, Eq. (2.15) holds true, and Pe1 is

symptotically stable. In addition, as shown in Eq. (2.12), ϕ > 0
mplies that R0 > 1. □

. The model with vaccination

In Brazil, vaccines with different efficacy rates have been
ranted use authorization since 2020. The vaccination rate varies
ver time in each city, depending on many factors, including the
ocal availability of vaccines, local vaccination rate capability, and
he size of the population being vaccinated considering age and
ealth conditions.
The available data do not provide information regarding the

ypes of vaccines administered to the individuals in the pop-
lation. Considering this, the efficacy of the vaccine cannot be
onsidered for the model validation, and it is considered that all
accinated individuals are homogeneously immunized, resulting
n another limitation of the proposed model.

In most studies, vaccination rate in SIR models were imple-
ented as a constant [63,64]. Therefore, vaccination intervention
as introduced in susceptible individuals. Once the individuals
re vaccinated, they are moved to the r(t) (recovered) compart-
ent at a rate given by the vaccination effort ω. It is assumed that

he vaccination effort will decrease the number of the susceptible
ndividuals in the population. Consequently, it is expected that
ver time, the number of infected individuals will decrease.
The proposed SIRSi-Vaccine model is illustrated in Fig. 2. In-

luding vaccination intervention in Eqs. (2.4) and (2.6) yields
qs. (3.1) and (3.2), respectively.
d
dt

s(t) = µ− α(1 − θ )si − µs + γ r − ωs;

d
dt

i(t) = α(1 − θ )si − (β1 + β2)i − µi;

d
dt

sick(t) = β2i − β3sick − µsick;

dr
dt

r(t) = β1i + β3sick − γ r + ωs − µr.

(3.1)

d
dt

s(t) = µ+ γ − α(1 − θ )si − (µ+ γ + ω)s − γ i − γ sick;

d
dt

i(t) = α(1 − θ )si − (β1 + β2 + µ)i;

d
dt

sick(t) = β2i − (β3 + µ)sick.

(3.2)
396
Fig. 2. Schematic of the compartmental SIRSi model with Vaccination, as
described by Eq. (3.1), illustrating the flow of individuals through the susceptible
(s), infected (i), infected symptomatic (sick), and recovered (r) compartments in
a normalized population. The model considers the effect of vaccination on the
transmission dynamics of the disease. The arrows indicate the flow of individuals
between compartments, with the rates of transitions determined by the model
parameters.

3.1. Basic reproduction number R0

We obtain R0 of the disease-free EP using next-generation ma-
trix (NGM) method [65,66]. Therefore, the transmission matrices
T and Σ are:

T =

⎡⎢⎢⎢⎣
0 −

α(1 − θ )(µ+ γ )
µ+ γ + ω

0

0
α(1 − θ )(µ+ γ )
µ+ γ + ω

0

0 0 0

⎤⎥⎥⎥⎦ ,

Σ =

[
−(µ+ γ + ω) −γ −γ

0 −(β1 + β2 + µ) 0
0 β2 −(β3 + µ)

]
,

(3.3)

here R0 is the largest eigenvalue of the NGM with large domain
= −TΣ−1:

=

⎡⎢⎢⎢⎢⎣
0

α (1 − θ) (γ + µ)

(−β1 − β2 − µ) (γ + µ+ ω)
0

0 −
α (1 − θ) (γ + µ)

(−β1 − β2 − µ) (γ + µ+ ω)
0

0 0 0

⎤⎥⎥⎥⎥⎦ . (3.4)

herefore,

0 =
α(1 − θ )(µ+ γ )

(β1 + β2 + µ)(γ + µ+ ω)
. (3.5)

3.2. SIRSi-Vaccine equilibrium points

As discussed in Section 2.1, the SIRSi-Vaccine mathematical
model in Eq. (3.2) contains two equilibrium points: the first of
which is consistent with a disease-free scenario; and the other
with an endemic equilibrium.

The disease-free equilibrium point in Eq. (3.2) is shown in
Eq. (3.6), for s∗ > 0.

Pdf 2 =

[ s∗
i∗
∗

]
=

⎡⎣ µ+γ

µ+γ+ω

0

⎤⎦ (3.6)

sick 0
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The local stability of the equilibrium points are determined by
the Jacobian matrix shown in Eq. (3.7).

J =⎡⎣−α(1 − θ )i∗ − (µ+ γ + ω) −α(1 − θ )s∗ − γ −γ

α(1 − θ )i∗ α(1 − θ )s∗ − (β1 + β2 + µ) 0
0 β2 −(β3 + µ)

⎤⎦
(3.7)

The disease-free equilibrium point Pdf 2 is associated with the
eigenvalues λ1, λ2, and λ3 in Eqs. (3.8), (3.9), and (3.10), respec-
tively.

λ1 = −(γ + µ+ ω); (3.8)

λ2 = (R0 − 1) (β1 + β2 + µ); (3.9)

λ3 = −(β3 + µ). (3.10)

Theorem 3. The disease-free EP (s∗, i∗, s∗ick) =

(
µ+γ

µ+γ+ω
, 0, 0

)
of the

system (3.1) and (3.2) is locally asymptotically stable, if R0 < 1.

Corollary 3.1. The disease-free EP is locally asymptotically stable,
independently of the vaccination rate ω and the isolation parameter
, if

α

β1 + β2 + µ
< 1. (3.11)

Proof. It is trivial from the definition of the eigenvalue λ2 in
q. (3.9) and R0 in Eq. (3.5). □

The endemic equilibrium point Pe2 is provided by Eq. (3.12):

e2 =

[ s∗
i∗
s∗ick

]
=

⎡⎣ β1+β2+µ

α(1−θ )
(β3 + µ)ψ
β2ψ

⎤⎦ , (3.12)

where

ψ =

(
R0 − 1
R0

)(
γ + µ

(β1 + β2 + γ + µ)(β3 + µ) + β2 γ

)
. (3.13)

The characteristic equation for the linearization at the endemic
EP is given as:

λ3 + a1λ2 + a2λ+ a3 = 0, (3.14)

where,
a1 = ψα(1 − θ )(β3 + µ) + β3 + γ + 2µ+ ω

2 = ψα(1 − θ )((β3 + µ)(β1 + β2) + β3(β3 + γ )

+ µ(3β3 + γ ) + 2µ2) + (β3 + µ)(γ + µ+ ω)

3 = ψα(1 − θ )(β3 + µ) (β1β3 + β1µ+ β2β3 + β2γ

+ β2µ+ β3γ

+ β3µ+ γµ+ µ2) ,
(3.15)

rom the Routh–Hurwitz criteria, the polynomial equation (3.14)
an be observed to exhibit all roots in the left half-plane, if and
nly if: (i) a1, a2 and a3 are positive; and, (ii) a1a2 > a3.

heorem 4. The endemic EP (s∗, i∗, s∗ick) =

(
β1+β2+µ

α(1−θ ) , (β3 + µ)ψ,
β2ψ), of the systems (3.1) and (3.2), exists such that (s∗, i∗, s∗ick) ∈

R3
+
, and is locally asymptotically stable, if R0 > 1.

Corollary 4.1. If R0 < 1, there is no endemic EP for systems (3.1)
nd (3.2), and the disease dies toward the disease-free EP.

roof. To confirm the existence of the endemic EP in R3
+
, it

s sufficient to verify that ψ > 0, provided that R > 1 (see
0

397
he definition of Pe2 in Eq. (3.12)), which is trivial, provided the
efinition of R0 in (3.5).
In Eq. (3.15), ψ > 0 implies ai > 0. To confirm the local

tability of endemic EP, we ought to verify a1a2 > a3; therefore,
the coefficients in Eq. (3.15) can be rewritten as follows:

a1 = ψp0 + p1
a2 = ψp2 + p3
a3 = ψp4,

(3.16)

where pi > 0. Subsequently, the second condition in the Routh–
Hurwitz criteria becomes:

(ψp0 + p1)(ψp2 + p3) > ψp4
ψ2p0p2 + ψ(p1p2 + p0p3) + p1p3 > ψp4.

(3.17)

To verify whether a1a2 > a3, at least one of the following
conditions ought to be verified to hold:

1. ψp0p2 − p4 > 0,
2. p1p2 + p0p3 − p4 > 0,
3. p1p3 − ψp4 > 0.

Expanding the second condition, we obtain:

β1β3γ + β1β3µ+ β1β3ω + β1γµ+ β1µ
2
+ β1µω +

β2β3µ+ β2β3ω +

β2µ
2
+ β2µω + β3

3 + 2β2
3γ + 5β2

3µ+ 2β2
3ω +

β3γ
2
+ 6β3γµ +

β3γω + 8β3µ
2
+ 5β3µω + γ 2µ+ 4γµ2

+ γµω + 4µ3
+

3µ2ω > 0,

(3.18)

Thus, the existence of the endemic EP in R3
+

is proved. □

The transcritical bifurcation diagram from the disease-free EP
to the endemic EP in the parameter space (θ, ω) for the systems
(3.1) and (3.2) is determined by the equation R0 = 0, which gives:

ω = −

(
γ + µ

1 − θc

)
θ + ωmin, (3.19)

where

θc = 1 −

(
β1 + β2 + µ

α

)
, and

ωmin =

(
α

β1 + β2 + µ
− 1

)
(γ + µ), (3.20)

rovided that
α

β1 + β2 + µ
> 1.

The bifurcation diagram is shown in Fig. 3. The dashed blue
line signifies the transcritical bifurcation of one of the eigenvalues
in each of the equilibrium points, signifying a switch in stability
that occurs at R0 = 0. The intersection of the dashed line with the
vertical axes represents the minimum vaccination rate required,
ωmin, to set a disease-free scenario with no social distancing mea-
sures, whereas θc represents the critical social distancing measure
or any NPI that defines the transition between the disease-free EP
to the endemic EP in the absence of vaccines.

The region above the dashed line represents all combinations
(θ, ω) that produce stable disease-free EP. The points (θ, ω) below
this line produce a stable endemic EP.

According to Eq. (3.12), the closer the pair (θ, ω) is to the
origin, the greater the value of the sick (sick) and the infected (i)
populations in the endemic EP.
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Fig. 3. Bifurcation diagram in the parameter space (θ, ω) for the system (3.1)–
3.2). The dashed line illustrated in the diagram corresponds to the condition
0 = 0 in Eq. (3.9), which demarcates the boundary between the disease-
ree equilibrium point and the endemic equilibrium point. This representation
rovides insights into the system’s stability and the impact of changes in the
arameters on the dynamics of the system.

. Parametric SIRSi-Vaccine model fitting

To test the results from Section, the parameters of the SIRSi
odel in Eq. (2.6) were determined numerically through para-
etric fitting using publicly available data of one of the larger
ities of Brazil, the city of São Paulo [67]. The aim of the fitting
as not necessarily to facilitate Covid-19 pandemic predictions,
owever to analyze possible scenarios considering variations in
wo of the most relevant variables in any epidemiological model:
he transmission and vaccination rates.

The data collected correspond to the confirmed cases of Covid-
9 during May 2020, for the fitting (from 2020-04-30 to 2020-05-
0) and the subsequent month (from 2020-05-30 to 2020-06-30)
or validation [68]. According to the data source, during the
entioned period, a reported Covid-19 case was confirmed by

he following criteria: (i) a positive RT-PCR2 test result performed
y an authorized laboratory according to the Brazilian Health
uthority; or (ii) clinical and epidemiological criteria, that is,
eported close contact with a confirmed case of Covid-19 in the
4 days prior to symptom onset.
The SIRSi-Vaccine model considers the effect of social dis-

ancing on the Covid-19 infectiousness. Previous studies that the
ovid-19 epidemiological models are strongly sensitive to this
arameter [33,69–71]. The data used to model social distancing
ere obtained from privacy-protected mobile phone location in-

ormation [72] corresponding to May 2020, provided by mobile
hone carries.
The social distancing index time history is shown in Fig. 4 for

he year 2020. It can be observed that the series is time-varying,
resenting a small-amplitude oscillatory behavior around a con-
tant value, with a short period of approximately 7 days (see [72]),
nd a long period of approximately 6 months.
Based on Fig. 4, the social distancing dynamics could be mod-

led as an impulse-driven oscillator; however, to maintain the
athematical reasoning as simple as possible, and to preserve
oth the analytical and the numerical insights, a first-order poly-
omial equation was selected to model the behavioral trend

2 Reverse Transcription-Polymerase Chain Reaction.
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observed in the data during the period considered. The first-
order social distancing index polynomial fitting is shown in Fig. 5.
Using the least-square fitting method, we obtained the following
approximation:

θ (t) = a1t + a0, (4.1)

rovided that a1 = 2.6 × 10−4 and a0 = 0.5. This approximation
was based on the isolation index data corresponding to May 2020,
and contains a root-mean-square error (RMSE) of 0.169; the data
and the linear approximation are shown in Fig. 5. The time-series
in Fig. 4 shows that the lower and upper bounds for the isolation
index data during this period were 0.35 and 0.6, respectively.

Nevertheless, the oscillatory behavior of the social distancing
index is not completely disregarded, as in Section 5, a simulation
result for an oscillatory social distancing index is shown.

We used the least-squares trust region reflective (TRR) algo-
rithm [73,74], which is a robust real-time optimization method,
fitting the sick population in Eq. (2.6) to the number of confirmed
ovid-19 cases. The root-mean-square error (RMSE) for this fit-
ing was 7.3 × 10−5. The approximation presented was derived
from data that has been normalized against the total population
reported by [68] for May 2020.

The free parameters in the fitting process are α, γ , β1, β2, β3,
nd i0 (Fig. 2). For the initial condition, sick0 was considered as
he normalized first data sample from the confirmed cases time-
eries; the initial number of infected/infectious population i0 was
onsidered as a random value with lower and upper bounds equal
o one and three times the number of confirmed cases, respec-
ively, as reported by Lima et al. and Sansone et al. [75,76]; the
nitial value for the recovered population r0 was set to 90% of the
nitial sick population [77,78]; the initial susceptible population s0
as computed as s(t) = 1−i(t)−sick(t)−r(t). For the initial guess

n the fitting process, bounded random values were considered
or each free parameter.

To validate the predictions generated by the model with ad-
usted parameters, the data on confirmed cases for the month
f June 2020, normalized with respect to the total population,
as used. The root mean square error (RMSE) was calculated to
e 1.06 × 10−4. Fig. 6 presents the simulation results.The fitting
esults are shown in Table 1.

Fig. 6 shows the trajectory of the Sick population after the
itting process separately with the fitting and the validation data.

. Simulation results

Hypothetical scenarios were analyzed from the SIRSi-Vaccine
odel in Eqs. (3.1) and (3.2), with parameters fitted in Section 4,

or different values of isolation index and vaccination rate.
The bifurcation diagram shown in Fig. 3 can now be modified

ith the set of fitted parameters in Table 1, and is shown by the
ashed line in Fig. 11. The intersections of the line R0 = 0, that
s, ωmin = 0.028 and θc = 0.58, suggest that at the considered
isease stage shown in Fig. 6, the epidemic could have been
ontrolled with NPI (non-pharmacologic intervention) separately,
ncluding distancing measures at values > 0.58, implemented for
t least 24 months.
The number of confirmed cases for this scenario is shown

n Fig. 7 (for θ = 0.59), where a maximum peak of 21,000
confirmed cases out of 12 million people would be attained in
July 2020. It is important to note that from the historical series
of the isolation index in Fig. 4, the maximum isolation index
recorded in 2020 was approximately 0.59 at the beginning of the
pandemic, and the lowest isolation index was 0.25 before any NPI
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Fig. 4. Temporal trend of the Isolation Index in São Paulothroughout 2020, as derived from publicly available data provided by SEADE (Foundation of the Data
Analysis System of the State of São Paulo), as reported by [72]. The vertical axis shows the isolation index as a percentage, whereas the horizontal axis displays the
data (in day/month format), during sampling. The Isolation Index peaked at 59% in March 2020 during the initial phase of the pandemic, and declined to its lowest
point of 35% in September of the same year.

Fig. 5. Isolation index data for May 2020, together with the linear approximation obtained through fitting. The linear approximation, as depicted in Eq. (4.1) represents
the best-fit line that characterizes the relationship between the isolation index and time. It also provides a simplified model for understanding the temporal trends
in the isolation index.

Fig. 6. Data used for parameter fitting and validation, together with the corresponding prediction curve. The orange circles represent the data used for fitting
the model parameters, whereas the blue circles represent the validation data. The solid line shows the predicted values generated by the fitted model (2.6). The
root-mean-square error (RMSE) for the validation data is 1.06 × 10−4 . (For interpretation of the references to color in this figure legend, the reader is referred to
the web version of this article.)

399
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Table 1
Summary of the parameters for the SIRSi model as specified in Eq. (2.4). The table includes the reported maximum and minimum values for each parameter based
on the literature, and the estimated values obtained through fitting.

Description Min. & Max. Parameter Refs.
values value

N Total population in 11,869,660 [33,68,79]
the city of São Paulo
in model (2.2).

µ Daily birth and 3.5945 × 10−5 [33,80]
death rate in
model (2.4).

α Transmission rate. [0.24; 1.00] 0.52a [33,81,82]

θ Social distancing [0; 1] a1t + a0a [33,72]
index.

γ Immunity loss rate. [0.0067; 0.02] 0.02a [83–85]

β1 Recovery rate for [0.1; 0.2] 0.1a [86,87]
asymptomatic.

β2 Symptom onset rate. [0.1; 0.3] 0.11a [33,87]

β3 Recovery rate for [0.07; 0.2] 0.13a [82,84]
symptomatic.

s0 Susceptible initial condition s(t)=1 − i(t)−
sick(t) − r(t) 0.996a

i0 Infected/infectious [1; 3] × sick0 0.0022a [75,76]
initial condition

sick0 Confirmed cases Collected from 0.0015
initial condition the normalized

initial date

aFitted.
Fig. 7. Illustration of the confirmed cases curve over time, with a fixed isolation index of 0.59, which is close to the critical value θc = 0.58 (as shown in Fig. 11),
n the absence of vaccination. The data indicates that implementing effective isolation measures could potentially eradicate the pandemic, even in the absence of a
accination strategy, despite extended periods of isolation.
easure. Therefore, isolation index equivalent to 0.59 could be
heoretically possible. However, an NPI as high as 59% maintained
or such a long time as to end the pandemic, would collaterally
roduce high economic losses, which is equally undesirable.
Fig. 8 shows another hypothetical scenario in the opposite

nd of the bifurcation diagram, where without any NPI (θ = 0),
accination rate is considered separately close to ωmin = 0.028
ithin the disease-free region. The percentage of vaccinated per
ay, provided by the product ωs(t), starts at 3% and it decreases
o approximately 1% of the population per day, while approaching
he pandemic end. In this hypothetical case, although the disease-
ree EP can be attained, the number of confirmed cases exceeds
400
half a million in less than a month after the beginning of the data
collection, representing over twenty times that of the number of
confirmed cases in the previous scenario.

The isolation index historical series (Fig. 4) presents an oscil-
latory behavior—the first month of data collection can be con-
sidered as transient. This time-series can be approximated as a
two-frequency small-amplitude oscillation signal around a con-
stant value θm:

θ (t) = θm + A1 sin(2π t/T1) + A2 sin(2π t/T2), (5.1)

and from Fig. 4, θm = 0.45, A1 = 0.05, T1 = 7 days, A2 = 0.075,
and T = 6×30 days. This seasonal oscillation, with two periods:
2
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Fig. 8. Illustration of two curves with a fixed vaccination rate of 0.03, proximate to ωmin = 0.028, representing the minimum vaccination threshold required to
preserve the stable disease-free equilibrium in the absence of NPI measures (Fig. 11). The first curve portrays the confirmed cases over time, showing a sharp peak
in the second month of the pandemic. The second curve exhibits the percentage of vaccinated population, initiated at 3% and progressively declining to below half
after 6 months.
Fig. 9. Two periodic curves with a constant vaccination rate of 0.04. The isolation index was modeled as a two-period series, comprising a short 7 days period and a
ong 6 months period, as illustrated in Eq. (5.1). The first curve represents the confirmed cases over time (Sick(t)), showing sharp peaks every 6 months. The second
urve portrays the susceptible population (S(t)), which oscillates with the same frequency, however with an estimated 2 months delay.
he short period of 7 days and the long period of 6 months could
esult in constant oscillations obtained from Eqs. (3.1) and (3.2).

Simulations of this scenario, with ω = 0.04 are shown in
igs. 9 and 10. Trajectories of Sick(t) and S(t) suggest that the

6 months small-variations in the isolation index can force the
steady high-amplitude 6 months oscillations in the number of
confirmed cases. The recognition of seasonal patterns in airborne
diseases have been studied extensively in the literature, although
the underlying mechanisms remain poorly understood [88]. This
hypothetical scenario was only intended to highlight the possi-
bility of successive waves of confirmed cases caused by small
variations in the isolation index and variations that could be a
consequence of the relaxation of security measures such as the
use of masks in public places.

Fig. 11 shows the contours of the peaks of the confirmed cases
in percentages of the total population, in the parameter space
401
(θ, ω), with all other parameters as shown in previous section.
The contours show that the closer the (θ, ω) pair is to the origin,
the higher the peak of confirmed cases. Furthermore, the increase
of NPI – the isolation index in this case – reduces the peak of
confirmed cases, even in the endemic region. On the other hand,
lower isolation values lead to higher peaks in the number of
confirmed cases, even within the disease-free region.

6. Discussions and limitations of the SIRSi-Vaccine model

The model contains limitations when considering the valida-
tion data, as the values of the parameters obtained by the fit,
as shown in Fig. 6. The simulations were performed considering
hypothetical scenarios.

Qualitatively, confirmed cases show a decrease after 2 years,
adopting strict isolation measures, close to 58% and without any
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Fig. 10. Phase plot representing the trajectories of confirmed cases (Sick(t)) and susceptible population (S(t)). The curves were generated with a constant vaccination
rate of 0.04, whereas the isolation index was modeled as a two-period series as depicted in Eq. (5.1). The periodic orbit of the solution is shown, highlighting the
cyclical nature of the pandemic dynamics under the given conditions.
Fig. 11. Contour graph displayed in a dark solid line representing the peaks of confirmed cases (Sick(t)×105) as a percentage of the total population. These contours
re shown as a function of the vaccination rate (ω) and the isolation index (θ ). In addition, the bifurcation curve for R0 = 0 represented in Eq. (3.5), is shown
n dashed blue line; the intersection of this curve with the axes indicates the critical value for the isolation index (θc = 0.58) and minimum vaccination rate
ωmin = 0.028). This curve further establishes the boundaries between the stable regions for the endemic equilibrium point and the disease-free equilibrium point,
s previously illustrated in Fig. 3.
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accine, indicating the infeasibility of the cost for such measures,
onsidering the city of São Paulo as the object of study (Fig. 7).
With the introduction of the vaccine and considering the min-

mum vaccination effort ωmin ≈ 0.03, the number of vaccinated
ould be ωS(t) per day; considering that even in this hypothetical
ituation, the number of confirmed cases would remain consid-
rably high, the period for the extinction of the disease would be
lose to three months (Fig. 8).
In practical application, the observed situations were not lim-

ted to the consideration of either vaccination or isolation mea-
ures separately. Rather, there were potential scenarios, in which
he combination of both interventions may effectively mitigate
he spread of the disease. Fig. 11 illustrates the combination of
402
wo such effective interventions: social isolation and vaccination.
he bifurcation diagram in this Fig. 11 represents a qualitative
hange in the model’s behavior. The region below the dashed line
ndicates the region of endemic equilibrium stability, whereas the
egion above this line is considered the disease-free region, which
s stable.

In the endemic region of the bifurcation graph, below the
ashed blue line in Fig. 11, all combinations of isolation and
accination parameters imply that the disease will persist within
he population, even with significant efforts in vaccination and
reventive NPI measures. The numerical values shown along each
lack curve represents the peak of the confirmed cases. As de-
icted in Fig. 11, the incidence of infection peaks can be mitigated
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hrough two approaches: augmenting the vaccination rate or
levating the isolation rate. However, the complete elimination of
he disease can only be accomplished when the parameter values
re located within the region above the bifurcation curve, which
orresponds to the stable disease-free equilibrium point.
From the historical series indicated in Fig. 4, it can be ob-

erved that the isolation rate was not constant, however periodic.
eriodicity was observed in the isolation index of 7 days and 6
onths.
For the simulations, the two periods, 7 days and 6 months

ere considered, shown in Figs. 9 and 10. The trajectories shown
n Fig. 9, calculated with ω = 0.04, which is in the disease-free
egion, suggest that the small-amplitude oscillation in θ can force
n oscillatory behavior in the system, breaking the equilibrium
oint to produce a stable limit-cycle that can be observed in the
hase portrait. Fig. 10 shows the limit cycle that relates the num-
er of confirmed and susceptible infected individuals, produced
y the variation of the isolation index. Semiannual variations in
he the isolation rate can produce significant oscillations of the
ame frequency in the number of infected.
The models presented in the first sections exhibit two distinct

quilibrium points, which were mutually exclusive. Notably, a
ranscritical bifurcation appears because of the sign change in one
f the eigenvalues, when the parameters vary (Figs. 3 and 11).
nterestingly, these models do not demonstrate Hopf bifurcations,
nd consequently, do not allow for the identification of natural
eriodic solutions.
Notwithstanding, under the influence of a periodic isolation

ndex with a small amplitude and a period of 6 months, the
ystem exhibits forced periodic solutions with a similar period
nd high amplitude, comparable to the peaks of the undisturbed
esponse, as shown in Fig. 9. This small-amplitude periodic fluc-
uation in the isolation index is evident in the historical data, as
epicted in Fig. 4.
This implies that a SIRSi model with vaccine subjected to a

orced term can yield other periodic solutions. The forced terms
an encompass variations in seasonal parameters, which have
een demonstrated to exert a significant influence. However,
comprehensive analysis of these effects necessitates a fresh

pproach to the problem, which is beyond the scope of this study.
evertheless, we aim to investigate these challenges in our future
ork.

. Conclusions

This work presents a novel compartmental model for Covid-19
hat estimates the number of unreported infected individuals by
ccounting for the confirmed cases, vaccination rates, and social
istancing index. The model sheds light on the dynamics of the
isease and its impact on the spread of Covid-19. Additionally,
e analyzed the conditions for the local stability in both disease-

ree and endemic equilibrium, which provides insights into the
ehavior of the disease in different scenarios.
The model aimed to show the variation of certain parameters

nd their influence on the qualitative responses associated with
he dynamics of virus propagation. From the analysis of the
odel, the possibility of the existence of two equilibrium points

disease-free and endemic) was verified.
With the introduction of vaccination associated with social

solation, we concluded that there is a minimum effort in vaccina-
ion and social isolation that ensures the existence of equilibrium
oints.
For the disease-free point, the transcritical bifurcation condi-

ion suggests that there is a possibility for the propagation dy-
amics to become endemic. Furthermore, for the endemic point,
he existence condition guarantees that if it exists, it is stable.
403
Moreover, as the disease-free and endemic equilibrium points do
not occur simultaneously, in both cases, local stability implies
global stability [51].

The analysis of the conditions for the local stability model
and the transcritical bifurcation diagram in the parameter space
(θ, ω) provides valuable insights into the behavior of the disease
in different scenarios. In Section 5, the possibility of forced limit
cycles owing to small-amplitude oscillations in the isolation index
is shown, which may help explain the periodicity of the waves
of infection. This observation suggests that further research is
required to better understand the dynamics of Covid-19 and
develop effective strategies for controlling the disease.

The transcritical bifurcation diagram was used to study the in-
fluence of the isolation index and vaccination rate on the switch-
ing stability between the endemic and disease-free equilibrium.
The diagram also shows the contours of the maximum number of
infected in the same parameter space, which helps policymakers
to understand the impact of different interventions on the spread
of the disease.

Investigating the spread of Covid-19 in the city of São Paulo
includes the consideration of the socio-demographic differences
of the most populous city in the country. For a detailed analysis
of viral dissemination, it is essential to account for the differences
in education, regional occupation, income, and access to health
services; and to summarize the economic, environmental, and
social conditions of the population residing in the region.

As the data considered for model validation includes the pop-
ulation of the entire city homogeneously, the simulations showed
that based on the periodicity of social distancing index, there is a
limit cycle, indicating that preventive measures such as social iso-
lation combined with vaccination may not ensure a disease-free
equilibrium [89], yielding different responses when considering
socio-demographic specifications.

Considering a vaccination rate higher than the minimum nec-
essary, and even considering the combination of parameters that
ensure disease-free points, the periodicity of contagions was ver-
ified, considering the peaks of infection, suggesting the necessity
for understanding the phenomenon.

In conclusion, this study contributes to the ongoing efforts
to understand the dynamics of Covid-19 and control its spread.
The novel compartmental model proposed in this study provides
a framework for estimating the number of unreported infected
individuals, which is crucial for developing effective strategies for
controlling the disease.
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